The goal of this project is to reduce the user time and effort needed for hydrologic modeling studies, thereby expediting fundamental knowledge discoveries. In addition to facilitating diverse data and model integration while ensuring reproducible computing, CyberWater also enables on-demand access to high-performance computing facilities.
Scientists need to use diverse data and integrate models outside their own disciplines with sufficient model accuracy and predictability. This is currently difficult to accomplish because (1) a vast quantity of diverse data are not readily accessible to models; and (2) diverse models developed individually by different research groups are difficult to share an integrate between disciplines.
The goal of this project is to build an open data, open modeling framework software that enables easy and incremental integration of diverse data and models for knowledge discovery and interdisciplinary team-work, as well as reproducible computing and seamless and on-demand access to HPC resources. Our project team includes hydrologists, climate experts, meteorologists, computer scientists and CI experts, from multiple universities and CUAHSI, who collaborate closely to ensure CyberWater will engage the broad communities for domain scientists' benefits.
CyberWater can lower the learning curve for modelers with limited skills in computer and technology, and enable them to quickly employ models from other domains. It advances the state-of-the-art by making it possible to quickly, effectively and reliably connect diverse models together to form a comprehensive integrated modeling framework for tackling emerging complex interdisciplinary problems using diverse sources of data.